

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 5289–5292

A stereoselective synthesis of the C11–C19 fragment of (+)-peloruside A

Zhen-liang Chen and Wei-shan Zhou*

Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 354 Fenglin Road, Shanghai 200 032, PR China

Received 29 April 2006; revised 22 May 2006; accepted 23 May 2006 Available online 13 June 2006

This work is dedicated to Professor Xi-kui Jiang on the occasion of his 80th birthday

Abstract—A new route to the synthesis of the C11–C19 fragment of peloruside A is described, which includes an aldol reaction with ethyl acetoacetate, β -hydroxyl-directed reduction of β -hydroxy ketone, as well as methylation of C13 hydroxyl moiety in the system of $MeI-Ag₂O-MgSO₄-CH₂Cl₂$. © 2006 Elsevier Ltd. All rights reserved.

(+)-Peloruside A 1 (Fig. 1) is a cytotoxic marine natural product,^{[1](#page-3-0)} isolated from a marine sponge, *mycale sp* in New Zealand.[2](#page-3-0) The structure and relative stereochemistry of peloruside A features a polyoxygenated 16-membered macrolide with a branched and Z-trisubstituted olefin, containing a multi-functionalized pyranose ring.

ity and was cytotoxic even at nanomolar concentrations.[2](#page-3-0) In addition, recent research demonstrated that peloruside A could effectively inhibit cell (such as human (HL-60) and mouse (32D-ras) myeloid leukemic cells) growth, which could induce cell death.[3](#page-3-0)

Preliminary biological experiments showed that peloruside A had paclitaxel-like microtubule-stabilizing activAs it has potent anticancer properties, multi-functionalized pyranose and scarcity in nature, peloruside A became an attractive target molecule for total synthesis.

Figure 1.

Keywords: Synthesis; Fragment; Peloruside A.

* Corresponding author. E-mail: zhws@mail.sioc.ac.cn

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.135

The first elegant total synthesis of $(+)$ -peloruside A was reported by De Brabander and co-workers in 2003 and then the absolute configuration of peloruside A was determined.[4](#page-3-0) Recently, Taylor and Jin have also completed the total synthesis of 1. [5](#page-3-0) In addition, many other research groups have reported their synthetic study of peloruside $A⁶$ $A⁶$ $A⁶$ In our previous letter, we reported the synthesis of the important backbone of the core of 1.^{6c} However, we encountered some problems in establishment of the Z-trisubstituted olefin. Therefore, we had to adjust our synthetic strategy. Herein, we would like to report our new efforts towards the synthesis of peloruside A.

Our new retrosynthetic analysis of 1 was outlined in [Fig](#page-0-0)[ure 1](#page-0-0). Peloruside A could be obtained from a suitable intermediate (2) via macrolactonization. Precursor 2 could be achieved from the two subunits C1–C10 segment 3 and C11–C19 segment 4 via an aldol transformation at C10–C11. In this letter, we would like to report a new route to the synthesis of segment 4.

As depicted in Scheme 1, oxazolidone 6 could be obtained by using Evans auxiliary 5 in 96% yield. Aldol reaction of 6 with s-trioxane according to Fukumoto and co-workers protocol[7](#page-3-0) and subsequent protection of the hydroxyl group of the product with triisopropylsilyl group provided $\hat{\mathbf{8}}$ in 49% overall yield. The reduction of 8 with LiBH₄ in THF–ether at room temperature afforded alcohol 9 in 88% yield.[7](#page-3-0) Exposure

to Swern oxidation of 9 and subsequent Horner–Emnos reaction of the resulting aldehyde 10 with sodium enolated of $(o\text{-cresol})_2PO(CH_3)CHCOOH (11)$ as described by Ando[8](#page-3-0) furnished tri-substituted Z-olefin 12 in 58% yield over two steps. Compound 11 could be prepared from P(OMe)₃ according to the Ando procedure.^{[8](#page-3-0)} α , β -Unsaturated ester 12 was reduced by Dibal-H to give the corresponding alcohol 13. Dess–Martin periodinane oxidation of 13 provided aldehyde 14, which was subjected to aldol reaction with ethyl acetoacetate accord-ing to the literature protocol.^{[9](#page-3-0)} The aldol products 16 (34%) and 17 (35%) were obtained and the absolute configurations were confirmed by ${}^{1}H$ NMR analysis of the corresponding (R) - and (S) -MTPA esters (Scheme 2).

As the initial test, aldol product 16 was transformed to 18, which was reduced with N a $BH₄$ to give two diastereomers of 19 ([Scheme 3](#page-2-0)). However, The diastereomers of 19 were unable to be separated by silica gel chromatography. Evans et al. reported that β -hydroxy ketone could be reduced by NaBH(OAc)₃ or Me₄NBH(OAc)₃ to give anti diol product.^{[10](#page-3-0)} We thus followed his idea. Fortunately, as expected, 16 was reduced by NaB- $H(OAc)$ ₃ to give anti diol 20 in 80.5% yield as a 90:10 mixture of isomers [\(Scheme 4\)](#page-2-0), which can be easily separated by silica gel chromatography.

Cyclization under acidic conditions $(PTS¹¹$ $(PTS¹¹$ $(PTS¹¹$ could only afford lactone 21 [\(Scheme 4\)](#page-2-0) in very low yield with little starting material recovered. The use of PPTS^{[12](#page-3-0)} as

Scheme 1. Reagents and conditions: (a) BuLi, butanoyl chloride, THF, -78 °C, 96% ; (b) TiCl₄, s-trioxane, Et₃N, 0 °C; (c) TIPSCl, Et₃N, rt, 49% for two step; (d) LiBH₄, Et₂O/THF, rt, 88%; (e) (COCl)₂, DMSO, Et₃N, -78 °C; (f) NaH, (*o*-cresol)₂PO(CH₃)CHCOOEt (11), THF, -78 °C, 58.2% for two step; (g) Dibal-H, CH_2Cl_2 , -78 °C, 86%; (h) Dess-Martin periodinane, CH_2Cl_2 , 0 °C.

Scheme 3. Reagents and conditions: (a) TBSCl, imidazole, DMF, DMAP, rt; (b) NaBH₄, EtOH, rt, 59.7% for two step.

Scheme 4. Reagents and conditions: (a) NaBH(OAc)₃, THF, 0 °C, 80.5%; (b) PPTS, CH₂Cl₂, rt, 46% (95% corr); (c) MeI, Ag₂O, MgSO₄, CH₂Cl₂, rt, 66.6% (88.3% corr); (d) PPTS, MeOH, rt, 71%; (e) TBSCl, imidazole, DMF, DMAP, rt, 57.8%.

a catalyst at high temperature also gave low yield with little starting material recovered. But at room temperature, the use of PPTS in CH_2Cl_2 could give 46% yield (95% corr) with 51.5% starting material recovered.

In the following steps, initially it was found that the methylation of C13 hydroxyl was troublesome. Under various conditions, $10b$ such as MeI/NaH and freshly prepared Ag₂O/MeI, both gave unsatisfactory results. Finally, the system of MeI–Ag₂O–MgSO₄–CH₂Cl₂ was found to be effective to methylate. It proved reliable and afforded the desired compound $22¹³$ $22¹³$ $22¹³$ (Scheme 4) in a reproducible 66.6% yield (88.3% corr) with 24.5% starting material recovered (Fig. 2). Using PPTS as catalyst, methanolysis of 22 provided δ -hydroxy methyl ester 23 in 71% yield. Silylation of the hydroxyl of ester 23 with *tert*-butyldimethylchlorosilane (TBSCl) afforded C11–C19 fragment 4^{[14](#page-3-0)} (Scheme 4) in 57.8% yield. During silylation, compound 22 was found, which could be a reason for the low yield.

In summary, we have accomplished a new stereoselective synthesis of C11–C19 fragment 4 of peloruside A. The feature of our new route is the application of aldol reaction of ethyl acetoacetate, b-hydroxyl-directed

reduction of β -hydroxy ketone, as well as methylation of C13 hydroxyl in the system of MeI–Ag₂O–MgSO₄– CH_2Cl_2 . Work towards segment 3 and the total synthesis of peloruside A is in progress in our laboratory and will be reported in due course.

Acknowledgements

We acknowledge the financial support from the National Science Foundation of China (No. 20472097) and China Postdoctoral Science Foundation (No. 2005038456). The help of Mr. Yi-fei Sheng and co-workers in our laboratory is also appreciated.

References and notes

- 1. Hood, K. A.; West, L. M.; Rouwé, B.; Northcote, P. T.; Berridge, M. V.; Wakefield, St. J.; Miller, J. H. Cancer Res. 2002, 62, 3356–3360.
- 2. West, L. M.; Northcote, P. T. J. Org. Chem. 2000, 65, 445–449.
- 3. Miller, J. h.; Rouwé, B.; Gaitanos, T. N.; Hood, K. A.; Crume, K. P.; Bäckström, B. T.; La Flamme, A. C.; Berridge, M. V.; Northcote, P. T. Apoptosis 2004, 9, 785– 796.
- 4. Liao, X. B.; Wu, Y. S.; De Brabander, J. K. Angew. Chem., Int. Ed. 2003, 42, 1648–1652.
- 5. (a) Jin, M. Z.; Taylor, R. E. Org. Lett. 2005, 7, 1303–1305; (b) Jin, M. Z.; Taylor, R. E. Org. Lett. 2003, 5, 4959–4961.
- 6. (a) Owen, R. M.; Roush, W. R. Org. Lett. 2005, 7, 3941– 3944; (b) Roulland, E.; Ermolenko, M. S. Org. Lett. 2005, 7, 2225–2228; (c) Liu, B.; Zhou, W. S. Org. Lett. 2004, 6, 71–74; (d) Paterson, I.; Di Francesco, M. E.; Kuhn, T. Org. Lett. 2003, 5, 599–602; (e) Ghosh, A. K.; Kim, J. H. Tetrahedron Lett. 2003, 44, 7659–7661; (f) Ghosh, A. K.; Kim, J. H. Tetrahedron Lett. 2003, 44, 3967–3969; (g) Gurjar, M. K.; Pedduri, Y.; Ramana, C. V.; Puranik, V. G.; Gonnade, R. G. Tetrahedron Lett. 2004, 45, 387–390; (h) Engers, D. W.; Bassindale, M. J.; Pagenkopf, B. L. Org. Lett. 2004, 6, 663–666; (i) Stocker, B. L.; Paul, T. S.; Hoberg, J. O. Eur. J. Org. Chem. 2004, 330–336.
- 7. Ihara, M.; Setsu, F.; Shohda, M.; Taniguchi, N.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 5317– 5323.
- 8. (a) Ando, K. J. Org. Chem. 1997, 62, 1934–1939; (b) Ando, K. J. Org. Chem. 1998, 63, 8411–8416.
- 9. Xu, C. F.; Zhang, Y. H.; Yuan, C. Y. Synlett 2004, 485– 488.
- 10. (a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560–3578; (b) Evans, D. A.; Fitch, D. M.; Smih, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033–10046.
- 11. Kiyooka, S. I.; Yamaguchi, T.; Maeda, H.; Kira, H.; Hena, M. A.; Horiike, M. Tetrahedron Lett. 1997, 38, 3553–3556.
- 12. Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet, J. A.; Lautens, M. J. Am. Chem. Soc. 1999, 121, 10033–10046.
- 13. Stereochemical assignment of compound 22 was based upon NOESY experiments. The spatial proximity of the protons H_a (δ 5.09 ppm), H_b (δ 3.74–3.78 ppm) and H_c $(6 \t2.28-2.38 \text{ ppm})$ is clearly evident in the NOESY spectrum.
- 14. Fragment 4: $[\alpha]_D^{21}$ -10.4 (c 0.47, CHCl₃); FT-IR (film, cm-1): 682, 775, 836, 883, 1014, 1077, 1095, 1162, 1251, 1379, 1438, 1464, 1745, 2866, 2895, 2934, 2958; ¹H NMR (CDCl₃, 300 MHz) δ : 0.02 (s, 3H), 0.07 (s, 3H), 0.87–0.92 (m, 12H), 1.01–1.13 (m, 21H), 1.14–1.30 (m, 1H), 1.40– 1.48 (m, 1H), 1.67 (s, 3H), 1.70–1.78 (m, 1H), 2.32–2.44 $(m, 2H)$, 2.59 (dd, $J = 6.3$, 15.0 Hz, 1H), 3.38 (dd, $J = 6.9$, 9.6 Hz, 1H), 3.33 (s, 3H), 3.40 (dd, $J = 6.9$, 9.6 Hz, 1H), 3.56 (dd, $J = 5.1$, 9.3 Hz, 1H), 3.67 (s, 3H), 3.86–3.78 (m, 1H), 4.75 (d, $J = 10.5$ Hz, 1H), 4.92 (d, $J = 9.9$ Hz, 1H); 1H), 4.75 (d, $J = 10.5$ Hz, 1H), 4.92 (d, $J = 9.9$ Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ : -5.1, -4.6, 11.9, 12.0, 17.97, 18.03, 18.1, 24.7, 25.8, 39.4, 41.7, 42.7, 51.5, 56.3, 66.6, 67.2, 74.4, 127.5, 139.4, 172.0; MS (ESI) m/z: 567.4 $([M+Na]^+);$ HRMS (ESI) calcd for C₂₉H₆₀O₅Si₂Na: 567.3877 ($[M+Na]^+$), found 567.3872.